

Subject: Computer Science						
Year 10						
Half -Term	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Themes/ Content/ Units covered	Dismantling a PC to identify hardware inside	Learning about the performance of the CPU	Learning about secondary storage (e.g. magnetic, optical and solid state)	Learning why computers need to store data in binary	Learning how computers process characters	Learning string manipulation and applying these to algorithms
A A A H A A A A A A A A A A A A A A A A	the purpose of the fetch execute cycle	embedded systems	Tackling a long answer exam question	denary to binary numbers and vice versa	computers process images	Using file handling operations (open, read, write, close)
	CPU components and the Von Neuman Architecture	Learning about primary storage (e.g. ROM, RAM and virtual memory)	Learning the units of data capacity	Adding 2 binary numbers together	computers process sound	
	Writing your first programs in Python	Applying sequence in programming	Converting data units (e.g. bytes to kilobytes)	Converting from hexadecimal to binary and vice versa	Learning how compression algorithms are used	arrays when solving problems
	Discovering how to debug your own code and identify syntax errors	Identifying and using selection in programming	Identifying and using count-controlled iteration	Converting from denary to hexadecimal and vice versa Representing	Exploring Boolean logic; creating truth tables and designing logic diagrams	Using programs (functions and procedures) to produce structured code
	Using arithmetic and comparison	Exploring more complex programs	iteration	algorithms as flow charts and using trace tables		
	Learning about data types and casting in algorithms	pi ogi allis		Generating random numbers in programs		

1